Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add filters

Language
Year range
1.
EBioMedicine ; 90:104518-104518, 2023.
Article in English | EuropePMC | ID: covidwho-2269294

ABSTRACT

Background Neurological damage caused by coronavirus disease 2019 (COVID-19) has attracted increasing attention. Recently, through autopsies of patients with COVID-19, the direct identification of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in their central nervous system (CNS) has been reported, indicating that SARS-CoV-2 might directly attack the CNS. The need to prevent COVID-19-induced severe injuries and potential sequelae is urgent, requiring the elucidation of large-scale molecular mechanisms in vivo. Methods In this study, we performed liquid chromatography-mass spectrometry-based proteomic and phosphoproteomic analyses of the cortex, hippocampus, thalamus, lungs, and kidneys of SARS-CoV-2-infected K18-hACE2 female mice. We then performed comprehensive bioinformatic analyses, including differential analyses, functional enrichment, and kinase prediction, to identify key molecules involved in COVID-19. Findings We found that the cortex had higher viral loads than did the lungs, and the kidneys did not have SARS-COV-2. After SARS-CoV-2 infection, RIG-I-associated virus recognition, antigen processing and presentation, and complement and coagulation cascades were activated to different degrees in all five organs, especially the lungs. The infected cortex exhibited disorders of multiple organelles and biological processes, including dysregulated spliceosome, ribosome, peroxisome, proteasome, endosome, and mitochondrial oxidative respiratory chain. The hippocampus and thalamus had fewer disorders than did the cortex;however, hyperphosphorylation of Mapt/Tau, which may contribute to neurodegenerative diseases, such as Alzheimer's disease, was found in all three brain regions. Moreover, SARS-CoV-2-induced elevation of human angiotensin-converting enzyme 2 (hACE2) was observed in the lungs and kidneys, but not in the three brain regions. Although the virus was not detected, the kidneys expressed high levels of hACE2 and exhibited obvious functional dysregulation after infection. This indicates that SARS-CoV-2 can cause tissue infections or damage via complicated routes. Thus, the treatment of COVID-19 requires a multipronged approach. Interpretation This study provides observations and in vivo datasets for COVID-19-associated proteomic and phosphoproteomic alterations in multiple organs, especially cerebral tissues, of K18-hACE2 mice. In mature drug databases, the differentially expressed proteins and predicted kinases in this study can be used as baits to identify candidate therapeutic drugs for COVID-19. This study can serve as a solid resource for the scientific community. The data in this manuscript will serve as a starting point for future research on COVID-19-associated encephalopathy. Funding This study was supported by grants from the 10.13039/501100005150Chinese Academy of Medical Sciences Innovation Fund for Medical Sciences, the 10.13039/501100001809National Natural Science Foundation of China, and the 10.13039/501100004826Natural Science Foundation of Beijing.

2.
EBioMedicine ; 90: 104518, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-2269298

ABSTRACT

BACKGROUND: Neurological damage caused by coronavirus disease 2019 (COVID-19) has attracted increasing attention. Recently, through autopsies of patients with COVID-19, the direct identification of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in their central nervous system (CNS) has been reported, indicating that SARS-CoV-2 might directly attack the CNS. The need to prevent COVID-19-induced severe injuries and potential sequelae is urgent, requiring the elucidation of large-scale molecular mechanisms in vivo. METHODS: In this study, we performed liquid chromatography-mass spectrometry-based proteomic and phosphoproteomic analyses of the cortex, hippocampus, thalamus, lungs, and kidneys of SARS-CoV-2-infected K18-hACE2 female mice. We then performed comprehensive bioinformatic analyses, including differential analyses, functional enrichment, and kinase prediction, to identify key molecules involved in COVID-19. FINDINGS: We found that the cortex had higher viral loads than did the lungs, and the kidneys did not have SARS-COV-2. After SARS-CoV-2 infection, RIG-I-associated virus recognition, antigen processing and presentation, and complement and coagulation cascades were activated to different degrees in all five organs, especially the lungs. The infected cortex exhibited disorders of multiple organelles and biological processes, including dysregulated spliceosome, ribosome, peroxisome, proteasome, endosome, and mitochondrial oxidative respiratory chain. The hippocampus and thalamus had fewer disorders than did the cortex; however, hyperphosphorylation of Mapt/Tau, which may contribute to neurodegenerative diseases, such as Alzheimer's disease, was found in all three brain regions. Moreover, SARS-CoV-2-induced elevation of human angiotensin-converting enzyme 2 (hACE2) was observed in the lungs and kidneys, but not in the three brain regions. Although the virus was not detected, the kidneys expressed high levels of hACE2 and exhibited obvious functional dysregulation after infection. This indicates that SARS-CoV-2 can cause tissue infections or damage via complicated routes. Thus, the treatment of COVID-19 requires a multipronged approach. INTERPRETATION: This study provides observations and in vivo datasets for COVID-19-associated proteomic and phosphoproteomic alterations in multiple organs, especially cerebral tissues, of K18-hACE2 mice. In mature drug databases, the differentially expressed proteins and predicted kinases in this study can be used as baits to identify candidate therapeutic drugs for COVID-19. This study can serve as a solid resource for the scientific community. The data in this manuscript will serve as a starting point for future research on COVID-19-associated encephalopathy. FUNDING: This study was supported by grants from the Chinese Academy of Medical Sciences Innovation Fund for Medical Sciences, the National Natural Science Foundation of China, and the Natural Science Foundation of Beijing.


Subject(s)
COVID-19 , Mice , Humans , Female , Animals , SARS-CoV-2 , Angiotensin-Converting Enzyme 2 , Proteomics , Mice, Transgenic , Lung , Hippocampus , Kidney , Thalamus , Disease Models, Animal
4.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.06.03.22275983

ABSTRACT

Importance People over 60 developed less protection after two doses of inactivated COVID-19 vaccine than younger people. Heterologous vaccination might provide greater immunity and protection against variants of concern. Objective To assess the safety and immunogenicity of a heterologous immunization with an adenovirus type 5-vectored vaccine (Convidecia) among elderly who were primed with an inactivated vaccine (CoronaVac) previously. Design An observer-blind, randomized (1:1) trial, conducted from August 26 to November 13, 2021. Setting A single center in Jiangsu Province, China. Participants 299 participants aged 60 years and olderof them 199 primed with two doses of CoronaVac in the past 3-6 months and 100 primed with one dose of CoronaVac in the past 1-2 months. Intervention Convidecia or CoronaVac as boosting dose Main Outcomes and Measures Geometric mean titers (GMTs) of neutralizing antibodies against wild-type SARS-CoV-2, and Delta and Omicron variants 14 days post boosting, and adverse reactions within 28 days. Results In the three-dose regimen cohort (n=199; mean (SD) age, 66.7 (4.2) years; 74 (37.2%) female), 99 and 100 received a third dose of Convidecia (group A) and CoronaVac (group B), respectively. In the two-dose regimen cohort (n=100; mean (SD) age, 70.5 (6.0) years; 49 (49%) female), 50 and 50 received a second dose of Convidecia (group C) and CoronaVac (group D), respectively. GMTs of neutralizing antibodies against wild-type SARS-CoV-2 at day 14 were 286.4 (95% CI: 244.6, 335.2) in group A and 48.2 (95% CI: 39.5, 58.7) in group B, with GMT ratio of 6.2 (95% CI: 4.7, 8.1), and 70.9 (95% CI: 49.5, 101.7) in group C and 9.3 (95% CI: 6.2, 13.9) in group D, with GMT ratio of 7.6 (95% CI: 4.1, 14.1). There was a 6.3-fold (GMTs, 45.9 vs 7.3) and 7.5-fold (32.9 vs 4.4) increase in neutralizing antibodies against Delta and Omicron variants in group A, respectively, compared with group B. However, there was no significant difference between group C and group D. Both heterologous and homologous booster immunizations were safe and well tolerated. Conclusions and Relevance Heterologous prime-boost regimens with CoronaVac and Convidecia induced strong neutralizing antibodies in elderly, which was superior to that induced by the homologous boost, without increasing safety concerns. Trial Registration Clinical Trials.gov NCT04952727


Subject(s)
COVID-19
6.
researchsquare; 2020.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-25603.v1

ABSTRACT

Background SARS-CoV-2 has been a global pandemic, but the emergence of asymptomatic patients has caused difficulties in the prevention of the epidemic. Therefore, it is significant to understand the epidemiological characteristics of asymptomatic patients with SARS-CoV-2 infection. Methods In this single-center, retrospective and observational study, we collected data from 167 patients with SARS-CoV-2 infection treated in Chongqing Public Health Medical Center (Chongqing, China) from January to March 2020. The epidemiological characteristics and variable of these patients were collected and analyzed. Findings 82.04% of the SARS-CoV-2 infected patients had a travel history in Wuhan or a history of contact with returnees from Wuhan, showing typical characteristics of imported cases, and the proportion of severe Covid-19 patients was 13.2%, of which 59% were imported from Wuhan. For the patients who was returnees from Wuhan, 18.1% was asymptomatic patients. In different infection periods, compared with the proportion after 1/31/2020, the proportion of asymptomatic patient among SARS-CoV-2 infected patient was higher(19% VS 1.5%). In different age groups, the proportion of asymptomatic patient was the highest(28.6%) in children group under 14, next in elder group over 70 (27.3%). Compared with mild and common Covid-19 patients, the mean latency of asymptomatic was longer (11.25 days VS 8.86 days), but the hospital length of stay was shorter (14.3 days VS 16.96 days). Conclusion The SARS-CoV-2 prevention needs to focus on the screening of asymptomatic patients in the community with a history of contact with the imported population, especially for children and the elderly population.


Subject(s)
COVID-19 , Severe Acute Respiratory Syndrome
7.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.03.16.20037259

ABSTRACT

Background: SARS-CoV-2 has been a global pandemic, but the emergence of asymptomatic patients has caused difficulties in the prevention of the epidemic. Therefore, it is significant to understand the epidemiological characteristics of asymptomatic patients with SARS-CoV-2 infection. Methods: In this single-center, retrospective and observational study, we collected data from 167 patients with SARS-CoV-2 infection treated in Chongqing Public Health Medical Center (Chongqing, China) from January to March 2020. The epidemiological characteristics and variable of these patients were collected and analyzed. Findings: 82.04% of the SARS-CoV-2 infected patients had a travel history in Wuhan or a history of contact with returnees from Wuhan, showing typical characteristics of imported cases, and the proportion of severe Covid-19 patients was 13.2%, of which 59% were imported from Wuhan. For the patients who was returnees from Wuhan, 18.1% was asymptomatic patients. In different infection periods, compared with the proportion after 1/31/2020, the proportion of asymptomatic patient among SARS-CoV-2 infected patient was higher(19% VS 1.5%). In different age groups, the proportion of asymptomatic patient was the highest(28.6%) in children group under 14, next in elder group over 70 (27.3%). Compared with mild and common Covid-19 patients, the mean latency of asymptomatic was longer (11.25 days VS 8.86 days), but the hospital length of stay was shorter (14.3 days VS 16.96 days) . Conclusion: The SARS-CoV-2 prevention needs to focus on the screening of asymptomatic patients in the community with a history of contact with the imported population, especially for children and the elderly population.


Subject(s)
COVID-19 , Severe Acute Respiratory Syndrome
SELECTION OF CITATIONS
SEARCH DETAIL